г.Тула, ул. Ф.Энгельса, 157

Ученые из РХТУ им. Д.И. Менделеева, вуза – участника НОЦ «ТулаТЕХ», получили люминесцентный аэрогель

Ученые из РХТУ им. Д.И. Менделеева синтезировали аэрогель из оксида кремния со встроенными люминесцентными частицами металлоорганического вещества Alq3. Такой подход дает возможность получить более гладкий и равномерный спектр излучения, чем у современных светодиодов.

Те светодиоды, которые используются сейчас имеют серьезные недостатки. Главный среди них — это неравномерность и неестественность излучения. Чаще всего светодиоды сами по себе испускают свет в узком диапазоне длин волн, то есть только определенного цвета, например, только зеленый или только красный. Поэтому чтобы делать с ними по-настоящему эффективные светоизлучающие устройства прибегают к разным хитростям, что значительно повышает их стоимость.

Так, в типичном современном белом светодиоде есть сразу два светоизлучающих вещества. Одно из них — это люминесцирующее вещество, которое испускает синий и ультрафиолетовый свет под действием электрического тока, а второе это полупрозрачная фосфоресцирующая пленка, которая уже под действием синего излучения начинает тоже испускать свет, но только уже желтый. Смесь желтого и синего в нужных пропорциях дает белый, но такая комбинация, конечно, отличается от естественного белого света: в ней слишком много ультрафиолета, а также другие соотношения между интенсивностями излучения на различных длинах волн, и в результате от такого света быстрее устают глаза. Поэтому ученые ищут новые подходы к созданию светодиодов.

Исследователи из РХТУ предложили использовать для этого аэрогели - так называют материалы, представляющие собой твердые легкие губки, поры которых заполнены газом.

«Мы попробовали внедрить люминесцентные вещества в аэрогели по двум основным причинам. Во-первых, у многих люминофоров заметно ухудшается спектр излучения с появлением даже самых незначительных примесей, а также они стремительно деградируют при контакте с влажным воздухом, который их окисляет - аэрогель может выступать в таких случаях как своего рода защитник

люминофора от окружающей среды», - рассказывает один из авторов работы, старший научный сотрудник РХТУ Артём Лебедев. «Во-вторых, аэрогель можно использовать как объемный излучатель, то есть встроить в него не один, а несколько люминесцентных веществ, излучение которых вместе даст гладкий и равномерный спектр. Также аэрогель хорошо подходит и для классической схемы белого светодиода, в котором ультрафиолетовое излучение одного вещества возбуждает фотолюминесценцию другого вещества. Аэрогель хорошо поглощает ультрафиолет и не дает ему выходить наружу, а вместо этого отправляет в путешествие по сложнейшему лабиринту пор пока ультрафиолет не дойдет до молекул люминофора. В результате получается равномерный спектр, сглаженный вот этой сложной внутренней архитектурой аэрогеля».

Авторы работы подчеркивают, что их исследование — это только первая демонстрация возможностей нового подхода и для полученных аэрогелей пока некорректно оценивать такие конечные технические характеристики светоизлучающих устройств как энергоэффективность. Сейчас ученые продолжают работу и внедряют в аэрогели уже другие металлоорганические люминесцирующие вещества, чтобы комбинировать их спектры излучения. В ближайшее время исследователи планируют сделать прототип светоизлучающего устройства на основе аэрогелей.

«В этой первой работе мы уже показали перспективность подхода с люминесцентными аэрогелями, но у этого подхода есть еще одна очень важная перспектива”, - рассказывает Артём Лебедев. “Дело в том, что сам Alq3 стоит очень дорого. Это связано с необходимостью его многократной очистки, с трудностями синтеза. В то же время исходный хинолин, из которого его синтезируют, значительно дешевле. И вот если придумать, как синтезировать металлоорганический комплекс из его прекурсоров непосредственно внутри “защитной” оболочки аэрогеля, в инертной среде сверхкритического диоксида углерода, то это было бы очень и очень выгодно. Над этим мы сейчас активно работаем».